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Setting Some Milestones when Modelling Cell Gene
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The whole-cell simulation of cell metabolic processes under considering a variable-volume modelling
framework has been reviewed to prove their advantages when building-up modular model structures that
can reproduce complex protein syntheses inside cells. The more realistic whole-cell-variable-volume (WCVV)
approach is exemplified when developing modular kinetic representations of the homeostatic gene
expression regulatory modules (GERM) that control the protein synthesis and homeostasis of metabolic
processes. In the first part, the general concepts of the WCVV modelling is presented, while in the second
part of the paper, past and current experience with GERM linking rules is presented in order to point-out how
optimized globally efficient kinetic models for the genetic regulatory circuits (GRC) can be obtained to
reproduce experimental observations. Based on quantitative regulatory indices evaluated vs. simulated
dynamic and stationary environmental perturbations, the paper exemplifies with GERM-s from E. coli, at a
generic level, how this methodology can be extended: i) to characterize the module efficiency, species
connectivity and system stability; ii) to build-up modular regulatory chains of various complexity; iii) to
prove feasibility of the cooperative vs. concurrent construction that ensures an efficient gene expression,
system homeostasis, proteic functions and a balanced cell growth during the cell cycle; iv) to prove the
effect of the whole-cell content ballast in smoothing the effect of internal/external perturbations on the
system homeostasis.
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Living cells are self-replicating complex biological
structures, able to convert environmental nutrients to
replicate the cell content in exactly one cell cycle. Cells
present such a highly sophisticated structure, involving
O(103-4) components, O(103-4) transcription factors (TF-s),
activators, and inhibitors, and at least one order of
magnitude higher number of (bio)chemical reactions, all
ensuring a fast adaptation of the cell to the changing
environment. Cell is highly responsive to the environmental
stimuli and highly evolvable by self-changing its genome/
proteome and metabolism to get an optimized and
balanced growth with using minimum of resources
(nutrients/substrates).

Cells have a hierarchic organization (structural,
functional and temporal), which is a characteristic of the
living matter in general: i) the structural hierarchy include
all cell components from simple molecules (nutrients,
saccharides, fatty acids, aminoacids, simple metabolites),
then macromolecules or complex molecules (lipids,
proteins, nucleotides, peptidoglycans, coenzymes,
fragments of proteins, nucleosides, nucleic acids,
intermediates), and continuing with well-organized nano-
structures (membranes, ribosomes, genome, operons,
energy harnessing apparatus, replisome, partitioning
apparatus, Z-ring etc. [1]). To ensure self-replication of such
a complex structure through enzymatic metabolic
reactions using nutrients (Nut), metabolites (Met), and
substrates (glucose/fructose, N-source, dissolved oxygen
and micro-elements), all the cell components should be
associated with specific functions into the cell, following
ii) functional hierarchy according to the species structure;
e.g. source of energy, intermediates. Sauro and Kholodenko
[2] provided examples of biological systems that have
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evolved in a modular fashion and, in different contexts,
perform the same basic functions. Each module, grouping
several cell components and reactions, generates an
identifiable function (e.g. regulation of a certain reaction,
gene expression, etc.). More complex functions, as
regulatory networks, synthesis networks, or metabolic
cycles can be built-up from basic building blocks. Such a
building blocks structure is very tractable when developing
cell reduced dynamic models by defining various metabolic
sub-processes, such as: regulatory functions for the
enzymatic reactions, energy balance functions for ATP/
ADP/AMP renewable system, electron donor systems of
the NADH, NADPH, FADH, FADH2 renewable components,
hydrophobic effects; or functions related to the metabolism
regulation (regulatory components / reactions of the
metabolic cycles, gene transcription and translation);
genome replication / gene expression regulation (protein
synthesis, storage of the genetic information, harness cell
energy), functions for cell cycle regulation (nucleotide
replication and partitioning, cell division); iii) the wide-
separation of time constants of the metabolic reactions in
the cell systems is called time hierarchy. Thus, the
reactions are separated in slow and fast according to their
time constant (see definition in [3]); in fact, only fast and
slow reactions are of interest, while the very slow processes
are neglected or treated as parameters (such as the
external nutrient or metabolite evolution). Aggregate pools
(combining fast reactions) are usually used in building-up
cell dynamic models in a way that intermediates are
produced in a minimum quantity and consumed only by
irreversible reactions. All cell processes obey a certain
succession of events, while stationary or dynamic
perturbations are treated by maintaining the cell
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components homeostasis, the recovering or transition
times after perturbations being minimum.

To model such an astronomically complex cell system
with a detailed kinetic model is practically impossible even
if expandable bio-molecular data are continuously added
in –omics databanks (e.g. KEGG, EcoCyc, Prodoric, Brenda,
CRGM, NIH [4]). However, as underlined by Tomita et al.
[5], and Tomita [6], whole-cell (WC) simulation of
metabolic processes with mechanistic kinetic models of
continuous variables, represents the grand challenge of
the 21st century. Such a huge effort is justified by the very
large number of immediate application: design genetically
modified micro-organisms (GMO) with desirable
characteristics to be used in industr y (new bio-
technological processes, production of vaccines). A large
number of GMO applications are in medicine, such as
therapy of diseases (gene therapy), new devices based on
cell-cell communicators, biosensors etc.

As underlined by Tomita [6] Computer models and in
silico experiments are necessary to understand and predict
phenotypes of the cell, especially when they are polygenic
phenotypes. After all, most biological and pathological
phenomena in which the pharmaceutical industry has a
great interest, such as cancer and allergy, are polygenic.

Comparatively to chemical systems, and lacking of
enough and reproducible experimental data, the cell
biochemical processes present the advantage of being
approached in a modular way; every subsystem can be
separately studied/modelled [6-10], that is: the central
carbon metabolism phosphotransferase PTS-system for
glucose transport into the cell, the pentose- phosphate
pathway PPP for nucleotides and aminoacids production,
and tricarboxylic acid cycle TCA, [10]); regulation of gene
expression, cell cycle, signal transduction, and various
metabolic pathways [6]. However, although these models
made significant contributions to the development of in
silico biology, the programs were only able to handle only
specific subsystems, and it was difficult to combine
different subsystem models into one single-cell model  [6].
Encouraging results have been reported for the design of
artificial gene networks, for reprogramming signaling
pathways, for refactoring of small genomes, or re-design
of metabolic fluxes with using switching genes. By
assembling functional parts of an existing cell, or by
designing new gene regulatory networks on a modular
basis, it is possible to reconstitute an existing cell (the so-
called integrative understanding) or to produce novel
biological entities with new properties. The genetic
components may be considered as building blocks because
they may be extracted, replicated, altered, and spliced into
the new biological organisms [7].

In a whole-cell approach, due to the mentioned
insuperable detailed modelling difficulties, various cell
modelling alternatives have been developed over decades
[7].

The structure-oriented analyses ignore some
mechanistic details and the process kinetics, and use the
only network topology, the so-called ‘Metabolic Control
Analysis’ (MCA) being focus on using various types of
sensitivity coefficients (the so-called ‘response
coefficients’), which are quantitative measures of how
much environmental perturbations (influential variable jx )
affects the cell-system states jy  (e.g. r = reaction rates, J
= fluxes, C = concentrations) around the steady-state

(QSS, of index ‘s’), i.e. . The
systemic response of fluxes (i.e. stationary metabolic
reaction rates), or of concentrations to perturbation

parameters (i.e. the ‘control coefficients’), or of reaction
rates to perturbations (i.e. the elasticity coefficients) have
to fulfil the ‘summation theorems’, which reflect the
network structural properties and the ‘connectivity
theorems’ related to the properties of single enzymes vs.
the system behaviour  [7].

The Boolean or topological approach can not
characterize the dynamics of the metabolic processes.

Even if regulation mechanisms are not fully understood,
metabolic regulation at a low-level is generally better
clarified, and conventional ordinary differential ODE kinetic
models with continuous variables, with a mechanistic
description of reactions tacking place among individual
species (proteins, mRNA, intermediates etc.) have been
proved to be a convenient route to analyse continuous
metabolic / regulator y processes and continuous
perturbations. When systems are too large or poorly
understood, coarser and more phenomenological kinetic
models may be postulated (e.g. protein complexes,
metabolite channelling etc.). In dynamic models, only
essential reactions are retained, the model complexity
depending on measurable variables and available
information. An important problem to be considered is the
distinction between the qualitative and quantitative
process knowledge, stability and instability of involved
species, the dominant fast and slow modes of process
dynamics, reaction time constants, macroscopic and
microscopic observable elements of the state vector. Such
ODE kinetic models can be useful to analyse the regulatory
cell-functions, both for stationary and dynamic
perturbations, to model cell cycles and oscillatory
metabolic paths, and to reflect the species inter-
connectivity or perturbation effects on cell growth [7].

To reduce from the modelling effort, structured reduced
WC-kinetic models are used according to the available –
omics/experimental data and utilization scope, including
lumped species and/or reactions. These modular models
present the advantage of being easily extensible. The rate
constants are usually estimated from stationary data (see
Appendix). As revealed by Visser et al. [12], Traditionally,
kinetic metabolic models are based on mechanistic rate
equations, which are derived from in-vitro experiments.
However, due to large differences between in-vivo and in-
vitro conditions, it is unlikely that the in-vitro obtained
parameters are valid in-vivo. Thus, the kinetic parameters
must be adjusted, using data on in-vivo metabolite levels
and fluxes obtained in dynamic experiments. Due to the
complexity of mechanistic rate equations, which often
contain a considerable amount of parameters, this requires
a large experimental and mathematical effort. Such an
approach is computational tractable, a large number of
chemical engineering, non-linear system control
algorithms being available.

Besides, application of lumping rules to metabolic
processes must also account for physical significance,
species interactions, and for preserving the systemic
properties of the metabolic pathway. The only separation
of components and reactions based on the time-constant
scale (as in the modal analysis of the Jacobian matrix J
case, see Appendix for J definition) has been proved to be
insufficient.

Applications of such cell dynamic simulators, especially
of GERM chains (the GRC) controlling the cell metabolism
are immediate: design new micro-organisms of desirable
characteristics; in-silico re-programming the cell
metabolism; design of biosensors; drug target release;
industrial bioprocess optimization and control using GMO;
gene therapy; optimal cell cloning, etc. Consequently, the
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cell metabolism can be changed by modifying/designing
GRC-s, thus conferring new properties/functions to the
mutant cells (i.e. desired ‘motifs’), while engineered/
synthetic gene circuits can be designed by using the
Synthetic Biology tools [12].

Of course, the use of reduced metabolic kinetic models
present a series of disadvantages, such as: loss in system
flexibility (due to the reduced number of considered
intermediates and species interactions); possibility to get
multiple (rival) reduced models of proximate
characteristics for the same cell system, difficult to be
delimited; loss in the model prediction capabilities; lumped
model parameters can lack of physical meaning; a loss /
alteration of systemic / holistic properties (e.g. cell system
stability, multiplicity, sensitivity, regulatory characteristics).

Starting from an available extended kinetic model,
classical chemical engineering rules can be applied to
reduce their structure [8] aiming at:

(i)Reducing the list of species, by eliminating
unimportant components and/or lumping some species
(by using various measures, e.g. small values for the
product of target species of index i  lifetime 
and its production rate ri, where the Jacobian elements are

, where if  are the right-side functions
of the ODE kinetic model (1);

(ii)Reducing the list of reactions, by eliminating
unimportant side-reactions and/or assuming quasi-
equilibrium for some reaction steps (or using sensitivity
measures of rate constants, such as ridge selection,
principal component analysis, time-scale separation, etc.);

(iii)Decomposing the kinetics into fast and slow ‘parts’
allowing a separate study and application of the quasi-
steady-state-approximation (QSSA) to reduce its
dimensionality [8].

When the ODE kinetic model is linear in parameters,
then the reduction procedure of Maria [13] can be applied
by preserving the system Jacobian invariants (eigenvalues,
eigenvectors).

Due to the modular functional organization of the cell, a
worthy route to develop reduced models is to base the
analysis on the concepts of ‘reverse engineering’ and
‘integrative understanding’ of the cell system [8]. Such a
rule allows disassembling the whole system in parts
(modules), and then, by performing tests and suitable
numerical / sensitivity analysis, to define rules that allow
to recreate the whole and its characteristics reproducing
the real system. Such an approach, combined with
derivation of lumped modules, allows reducing the model
complexity by relating the cell response to certain
perturbations to the response of few inner regulatory loops
instead of the response of thousands of gene expression
and metabolic circuits. Such a procedure is very suitable
for modelling genetic regulatory circuits (GRC) by linking
gene expression regulatory modules (GERM-s) in such a
way to maintain the cell homeostasis, that is to maintain
relatively invariant species concentrations despite
perturbations. [4,7-8,14-15].

A potential application of lumped modular GRC models
is the so-called genetic circuit engineering, by which
simulation of gene expression is used to in-silico design
organisms that possess specific and desired functions. By
inserting new GRC-s into organisms, one may create a
large variety of mini-functions / tasks (or desired ‘motifs)
in response to external stimuli. The induced functions in
gene circuits are diverse, such as: switches (decision-
making branch points between on/off states according to
the presence of inducers), oscillators (cell systems evolving

among two or several quasi-steady-states), signal /
external stimuli amplifiers, amplitude filters, genetic
‘memor y ’ storage. The genetic components may
considered as building blocks because they may be
extracted, replicated, altered, and spliced into new
biological organisms. Combination of induced motifs in
modified cells one may create potent applications in
industrial and medical fields, e.g. the production of
biosensors used in medicine or environmental engineering
applications. Design of modular GRC-s must account for
some properties (see also below): a tight control of gene
expression (i.e. low-expression in the absence of inducers
and accelerated expression in the presence of specific
external signals); a quick dynamic response and high
sensitivity to specific inducers [8].

The emergent Synthetic Biology [4,9] interpreted as the
engineering-driven building of complex biological entities,
aims at applying engineering principles of systems design
to biology with the idea to produce predictable and robust
systems with novel functions in a broad area of applications,
such as therapy of diseases (gene therapy), design of new
biotechnological processes, new devices based on cell-
cell communicators, biosensors, etc. By assembling
functional parts of an existing cell, such as promoters,
ribosome binding sites, coding sequences and terminators,
protein domains, or by designing new gene regulatory
networks on a modular basis, it is possible to reconstitute
an existing cell or to produce novel biological entities with
new properties. One particular application of such dynamic
models is the study of genetic regulatory circuits (GRC), in
order to predict the way in which biological systems are
self-regulated and respond to signals. The emergent field
of such efforts is the so-called gene circuit engineering
and a large number of examples [7] have been reported
with in-silico creation of novel GRC conferring new
properties/functions to the mutant cells (i.e. desired ‘motifs’
in response to external stimuli), such as [4]: toggle-switch,
i.e. mutual repression control in two gene expression
modules, and creation of decision making branch points
between on/off states according to the presence of certain
inducers; hysteretic GRC behaviour, that is a bio-device
able to behave in a history-dependent fashion, in
accordance to the presence of a certain inducer in the
environment; GRC oscillator producing regular fluctuations
in network elements and reporter proteins, and making
the GRC to evolve among two or several quasi-steady-
states; specific treatment of external signals by controlled
expression such as amplitude filters, noise filters or signal
/ stimuli amplifiers; GRC signalling circuits and cell-cell
communicators, acting as programmable memory units.
[4].

One key element to such cell dynamic simulators is the
adopted kinetic model of the GERM-s. from the large
number of proposed mechanistic models from literature
[4,7,9,14,16]. When constructing a GRC for a certain cell
metabolic pathway, there are two problems which must
be addressed properly: I) how to choose the suitable GERM
structures of the GRC chain, by screening among
alternatives [4,9,14,16,17-19] based on their regulatory
properties (i.e. quantitative performance indices P.I.)
matching with the experimental data; and ii) what rules to
be applied to link such GERM-s to reproduce the cell system
holistic behaviour.

The aim of this paper is to review and to extend the GRC
modelling investigation of Maria [4,7-9,14,15] by pointing-
out some milestones that should be considered when
developing effective GRC in a WCVV modelling approach.
While the first part of the study will present the general
concepts related to WCVV modelling, the second part will
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offer some examples by using two GERM-s of simple structure extracted from the lac operon of E. coli [8].

WCVV modelling framework
From the mathematical point of view, development of a (bio)chemical kinetic model of continuous variables for a

(bio)chemical process implies writing a set of differential mass balances of the system state, i.e. biological/chemical
species of concentrations C vector, that is by default:

(1)

where:
Cj = cell-species j concentration;
V = cell volume;
nj = species j number of moles;
rj = j-th reaction rate;
ns = number of species inside the cell (individual or lumped);
t = time;
π= osmotic pressure;
T = temperature;
R = universal gas constant.
When continuous variable dynamic models are used, the default modelling framework (1) is that of a constant

volume/osmotic pressure system, accounting for the cell-growing rate as a decay rate of key-species (often lumped with
the degrading rate) in a so-called diluting rate. Such a representation might be satisfactory for many applications, but not
for accurate modelling of cell regulatory / metabolic processes under perturbed conditions, or for division of cells, distorting
the prediction quality [4].

The living cell is a system of variable volume: from simple to double during the cell cycle. In a whole-cell modelling
framework [6] of variable-volume WCVV [4,7-8], all cell species should be considered (individually or lumped) all species
net reaction rates contributing to the cell volume increase (see the proof in the Appendix). As the cell volume is doubling
during the cell cycle, this volume variability can not be neglected in the cell kinetic models describing various cell
metabolic processes taking place in the cytosol. Thus, a metabolic kinetic model in a variable-volume approach should be
written in a different form, defined by Aris [20] for chemical reacting systems, and Grainger and Gaffney [23] for biological
systems, and promoted by Maria [4,7-9,14,15] for cell systems, that is:

(2)

where:
Cj= cell-species j concentration;
V = cell volume;
nj= species j number of moles;
rj= j-th reaction rate;
D = cell-content dilution rate, i.e. cell-volume logarithmic growing rate;
ns= number of species inside the cell (individual or lumped);
t = time.
The hypotheses of such a cell model are given in the Appendix.
The definition of D results from the way by which it was deducted for variable volume reacting systems [7, 20]:

(3)

The system Jacobian at steady-state (index s) is:
(4)

Additionally, for an isotonic (of constant osmotic pressure π) and isothermal cell system a supplementary constraint
is added, that is the Pfeiffers’law of diluted solutions [4,7,8,21-23]:

(5)

which, by derivation and division with V is leading to [4,7,8]:

   (6)

As revealed by the Pfeffer’s law eqn. (5) in diluted solutions [22], the volume dynamics D variable is linked to the
molecular species dynamics under isotonic and isothermal conditions by means of relationship (6). Consequently, the
dilution D results as a sum of reacting rates of all cell species (individual or lumped), The RT/π  term can be easily
deducted in an isotonic cell system, from the fulfilment of the following invariance relationship derived from the Pfeffer’s
law in diluted solutions:

(7)
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If this WCVV modelling concept is not applied, the default classical constant volume ODE kinetic modelling of type
eqn. (1) has been applied, with a large number of inconveniences, related to ignoring lots of intra-cell effects, such as: the
influence of the cell ballast in smoothing the homeostasis perturbations; the secondary perturbations transmitted via cell
volume following a primary perturbation; the more realistic evaluation of GERM P.I.-s, and of the recovering/transient
times after perturbations, etc. [4,7,8].

When elaborating a cell-regulation model, the cell-volume growing rate effect is essential for accounting several
effects: continuous diluting of the cell content, cell-resistance to small perturbations in the internal/external components
due to the inertial ‘big volume’ effect, indirect effect due to perturbations in concentrations on the cell-metabolism
through the induced changes in the volume growing rate. The volume-growth diluting effect acts as a continuous stationary
perturbation for the concentration-levels, and formally can be assimilated with a first order decay rate of all cellular
species during a cell-cycle.

It follows that the cell-volume variation during a cell-growth cycle is an essential term to be accounted in every cell-
modelling attempt to obtain more satisfactory predictions. Although most of reported models, both deterministic or
stochastic, ignore or diminishes such effects and build-up ‘constant’ cell-volume equations written in terms of species
concentrations, the new elaborated regulatory/whole cell-models over the last couple of years accounted the cell-
volume growth in an explicit way [4,7-9,14,15,24-28].

For instance, Sewell et al. [17] included the volume-diluting effect only for the protein-concentrations through a formally
first-order decay rate. Such an approach, even being satisfactory for rapid and simple predictive purposes, suffers of two
major disadvantages: (i) the ‘decay’ rate is not considered for all the species in order to avoid high model complexity, and
(ii) the ‘decay’ rates can report different rate constants for various species, when in reality the same diluting constant rate
is reported for all the species; (iii) the ‘inertial’ cell-volume / large copynumber effect to smooth perturbations cannot be
simply and naturally included in a constant-volume cell-model.

The same fictive decay-rate approach has been reported by Tomita et al. [5] in developing an E-cell continuous
differential model with including a larger number of genes and proteins. As mentioned by Tomita [6], the E-cell system
also accepts user-defined reactions, making it capable of handling many other phenomena such as diffusion and variable
cell volume. Using the EcoCyc and KEGG databases, the authors simulate the dynamics of 127 genes/proteinic system for
the M. genitalium cell. However, this model suffers from several drawbacks such as lack of autocatalysis effects during
a cell-cycle, by considering any replication of the genome, and any cell-division process. Recently, the authors reported
some improvements of the E-cell model with including the osmotic pressure balance and volume cell growth without
specifying details [29].

Other models, such of Gibson and Bruck [30], avoid including the cell-volume increase effects when considering only
first-order reaction terms into the model equations. However, the authors signalled that such an approximation can create
a large calculation error.

In the present study a different way is approached when modelling a regulatory cell-module, by explicitly including
separate equations for the cell-volume growth and cell-osmotic pressure, while the continuous ODE model was re-
written in terms of species moles. The cross-autocatalytic effects are also included when separate protein and gene
synthesis catalytic paths are considered. Moreover, external cell-factors are better accounted by separately considering
the protein and gene raw-materials (see below formulations of GERM-s). It is also to observe that, from definition of D in
eq. (3), it results the cell volume dynamics:

V(t) = Voexp(+D . t) (8)
Cell volume doubles over the cell cycle period (tc), with an average logarithmic growing rate of D=ln(2Vo/Vo)/tc=(2)/tc.

For stationary balanced growing conditions, species synthesis rates are equal to first-order dilution rates (DCj), leading to
time-invariant species concentrations (i.e. homeostatic conditions, (dCj/dt)s = 0), that is;

(9)

The hypotheses of such a WCVV kinetic model are given in the Appendix.

Rate constant estimation.
In the WCVV differential model, the large number of rate constants are estimated by using several methods. If the

stationary cell species concentration vector  Cs is known (for the individual or lumped components considered in the
kinetic model), the rate constant vector  k results by solving the nonlinear algebraic set (9), for every cell subsystem (e.g.
a GERM), by using an effective procedure [31, 42]. As the (RT/p) term is known from the initial condition, and the number
of model parameters is usually higher than the number of observed cell species, supplementary optimization rules can be
applied to determine some rate constants, by imposing optimum regulatory criteria for GERM-s, such as minimum
recovering time of the stationary concentrations (homeostasis) after a dynamic (‘impulse’-like) perturbation in a key-
species [7], and using effective solvers [31]:

(10)
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where τp has been evaluated by applying a 10%[P]s
impulse perturbation and by determining the recovering
time with a tolerance of 1%[P]s ; Li (e.g. enzymes or even
genes G, P, M, etc.) is a GERM component at which

regulatory element O, TF, R acts (fig. 1). To estimate ,

other regulatory global properties can also be used together
with the constraints eqns. (7,9,10) [7,32]. The reverse
reaction rate constants in the rapid buffer reactions of
GERM-s, of type G+P ⇔ GP, are adopted at values five to
seven orders of magnitude higher than D (see the proof of
Maria [7]). That is because fast buffering reactions are
close to equilibrium and have little effect on metabolic
control coefficients. As a consequence, rate constants of
such rapid reactions are much higher than those of the
core synthesis and dilution rates.

A WCVV model formulation presents an important
number of advantages [4,7,8,14]:

- the estimated rate constants are more realistic
comparatively with those derived from constant-volume
model formulations (usually used in modelling cell
biochemical systems) due to the considered cell regulatory
properties;

- some simplifications, such as dilution terms defined
for only key species are removed, and all species are treated
on the same basis;

- species inter-connectivity (i.e. the degree to which a
perturbation in one component influences others) is better
characterized by including direct interrelations (via
common reactions and intermediates) but also indirect
relationships via the common cell-volume to which all
species contribute (eq. 6-7);

- possible perturbations in the volume size and osmotic
pressure can be also considered;

- perturbations applied to components of large
concentrations lead to an important perturbation of the
cell volume, which in turn lead to large perturbations of
other cell component stationary concentrations (i.e. the
so-called  secondary  or indirect  perturbations); vice-versa,
perturbations in species of low levels will have a low effect
on the cell volume, and then a small secondary effect on
other components, because:

                  ;
- cells of large content (large ballast) diminishes the

indirect perturbations (the so-called ‘inertial’ effect, or
perturbation smoothing); the ballast effect shows how all
cell components are interconnected via volume changes;

- the derived performance indices P.I.-s of GERM-s under
WCVV conditions [7,8,14] present more realistic estimates
comparatively with those derived from the classical
constant-volume kinetic models which tend to
overestimate the P.I.-s [16].

The only disadvantages of a WCVV kinetic model result
from:

- a larger computation effort to identify the model
parameters from the stationary species concentrations,
and solving the nonlinear set eq. (9) (which sometimes
can present multiple solutions, difficult to be
discriminated);

- in a WCVV kinetic model all species (individual or
lumped) have to be included in the model, because all
contributes to the volume dynamics. In such a manner,
the number of rate constants increases leading to a
corresponding increase in the identification effort.

Such WCVV kinetic models with continuous variables,
usually characterize metabolic processes during the cell
balanced growing phase (ca. 80% of cell cycle). When

cell reaches a critical size and a certain level of the surface-
area-to-volume ratio, the division phase begins, lasting the
last 20% of cell cycle. Over this phase (not analysed here),
specialized proteins constrict the cell about its equator,
thus leading to cell division. The duplicated content is thus
partitioned, more or less evenly, between daughter cells.
To model such a phase, supplementary terms must be
added to explicitly account for the cell membrane
dynamics [26].

Modelling a gene expression regulatory circuit (GERM)
Protein synthesis by gene expression is a highly regulated

process to ensure a balanced and flexible cell growth under
indefinitely variate environmental conditions. How this very
complex process occurs is partially understood, but a multi-
cascade control with negative feedback loops seems to
be the key element. Enzymes catalyzing the synthesis are
allosterically regulated by means of positive or negative
effector molecules (transcriptional factors TF), while
cooperative binding and structured cascade regulation (of
the gene transcription and translation) amplify the effect
of a change in an exo/endo-geneous inducer. Gene
expression is also highly regulated to flexibly respond to
the environmental stress The metabolic regulator features
are determined by its ability to efficiently vary species flows
and concentrations under changing environmental
conditions so that a stationary state of the key metabolite
concentrations can be maintained inside the cell. [7]

To model such a complex metabolic regulatory
mechanisms at a molecular level with ODE kinetic models,
Sewell et al [17], Savageau [18], Hlavacek and Savageau
[19]; Maria [7,16] proposed simple mechanistic structures
by using a modular approach, useful in simulating the
hierarchical organization of cell regulatory networks.

Concerning the protein synthesis, this process is
presumably regulated by a complex homeostatic
mechanism that controls the expression of the encoding
genes. On the other hand, cells contain a large number of
proteins of well-defined functions, but strongly interrelated
to ensure an efficient metabolism and cell growth under
certain environmental conditions. Proteins interact during
the synthesis and, as a consequence, the homeostatic
systems perturb and are perturbed by each other. To
understand and simulate such a complex regulatory
process, the modular approach is preferred, being based
on coupled semi-autonomous regulatory groups (of
reactions and species), linked to efficiently cope with cell
perturbations, to ensure system homeostasis, and an
equilibrated cell growth. Various types of kinetic modules
can be analyzed individually as mechanism, reaction
pathway, regulatory characteristics, and effectiveness. As
a limited number of regulatory module types govern the
protein synthesis, it is computationally convenient to step-
by-step build-up the modular regulatory network (GRC) by
applying certain principles and rules to be further discussed,
and then adjusting the network global properties.
Accordingly, it is desirable to focus the metabolic regulation
and control analysis on the regulatory/control features of
functional GERM subunits than to limit the analysis to only
kinetic properties of individual enzymes acting over the
synthesis pathway.

The modular approach to analyse the gene expression
assumes that the reaction mechanism and stoichiometry
of various types of kinetic modules are known, while the
involved species are completely observable and
measurable. Such a hypothesis is rarely fulfilled due to the
inherent difficulties in generating reliable experimental
(kinetic) data for each individual metabolic subunit.
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However, incomplete kinetic information can be
incorporated by performing a suitable model lumping [31],
or by exploiting the cell and module global optimal
properties during identification steps. The regulatory
modules can be constructed relatively independent to each
other, but the linking procedure has to consider common
input/output components, common linking reactions, or
even common species. Rate constants can be identified
separately for each module, and then extrapolated when
simulating the whole regulatory network, by assuming that
linking reactions are relatively slow comparatively with the
individual module core reactions. In such a manner, linked
modules are able to respond to changes in common
environment and components such that each module
remains fully regulated.

When elaborating a protein synthesis regulatory module
(i.e. a gene expression regulatory module, GERM), different
degrees of simplification of the process complexity can
be followed. A GERM is a semi-autonomous regulatory
group of reactions and species, linked to efficiently cope
with cell perturbations, to ensure system homeostasis, and
an efficient gene expression.

For instance, the gene expression (see schema of  fig.
1) can be translated into a modular structure of reactions,
more or less extended, accounting for individual or lumped
species. At a generic level, in the simplest representation
(fig. 1, up), the protein (P) synthesis rate can be adjusted
by the ‘catalytic’ action of the encoding gene (G). The
catalyst activity is in turn allosterically regulated by means
of ‘effector’ molecules (O, P, or R) reversibly binding the
catalyst G via fast and reversible reactions (the so-called
‘buffering’ reactions). These simple regulation scheme can
be further detailed in order to better reproduce the
experimental data, with the expense of a supplementary
effort to identify the module kinetic parameters. For
instance, a two-step cascade control of P-synthesis model
also includes the M = mRNA transcript encoding P (fig. 1
center). The effector (O), of which synthesis is controlled
by the target protein P (fig. 1 center), can allosterically
adjust the activity of G and M, i.e. the catalysts for the

transcription and translation steps of the gene expression.
In such a cascade schema, the rate of the ultimate reaction
is amplified, depending on the number of cascade levels
and catalysis rates (fig. 1 down). More complex regulatory
modules have been elaborated [4,15], and used in
developing genetic regulatory circuits GRC) following a
similar route to translate from the language of molecular
biology to that of mechanistic chemistry, by preserving
the structural hierarchy and component functions. Once
elaborated, such a modular structure can be modelled by
using a continuous variable ODE kinetic model under a
WCVV framework, and then analysed as functional
efficiency by means of some quantitative performance
indices below described.

The correctly WCVV kinetic modelling of GERM-s by
reproducing the linked GERM regulatory efficiency in a GRC
is an essential step in describing the cell metabolism
regulation via the hierarchically organized GRC-s (where
key-proteins play the role of regulatory nodes). Also, it is to
be underlined that the gene expression is a highly self- /
cross- regulated and mutually catalyzed process by means
of the produced enzymes / effectors.

As the cell regulatory systems are module-based
organized, complex feed-back and feed-forward loops are
employed for self- or cross-activation / repression of
interconnected GERM-s, leading to different interaction
alternatives (directly/inversely, perfect/incomplete,
coupled/uncoupled connections) of a gene with up to 23–
25 other genes. (Maria, 2014), to ensure the key-species
homeostasis, holistic and local regulatory properties of the
enzymatic reactions. While Maria [4,7,9,14,16], Sewell et
al [17], Savageau [18], Hlavacek and Savageau [19] used
reduced GERM structures of 10-14 reactions, that ensures
a satisfactory tradeoff between model simplicity and its
predictive quality [8], more sophisticated constructions are
proposed in the literature [9].

As an example, Kaznessis [33, 34] designed a bistable
switch genetic circuit, by using two gene modules
extracted from the lac operon of E. coli. The transcriptional

Fig.1. Protein P synthesis - simplified
representations of a generic gene expression

regulatory module (GERM). The horizontal arrows
indicate reactions; vertical arrows indicate catalytic
actions; absence of a substrate or product indicate

an assumed concentration invariance of these
species; G = gene encoding P; M = mRNA). The
right structure corresponds to a [G(R)n; M(R)n]

module type. Up-row: the simplified
representation of the gene expression two-steps:

transcription and translation (left), and (right) a
simplified reaction schema of the gene expression

[7,16]. The right model corresponds to a [G(R)n;
M(R)n] GERM type. Center (adapted from Maria,

2005): Protein P synthesis - simplified
representation of type [G(O)n; M(O)n] of the self-
regulated expression module (horizontal arrows

indicate reactions; vertical arrows indicate catalytic
actions; absence of a substrate or product indicate

an assumed concentration invariance of these
species; G = DNA gene encoding P; M = mRNA; O

= allosteric effectors). Down-row: two types of
GERM simplified representations for protein

synthesis: [G(P)n] (left) and [G(PP)n] (right)(Maria,
2005); horizontal arrows indicate reactions; vertical

arrows indicate catalytic actions; absence of a
substrate or product indicate an assumed
concentration invariance of these species)
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Figure 2. Investigate alternative kinking of two GERM-s:
The horizontal arrows indicate reactions; vertical arrows

indicate catalytic actions; absence of a substrate or
product indicate an assumed concentration invariance of
these species). There is no direct connectivity between

the two GERM-s. Up-left: Competitive (on common
metabolites) linking of [G1(P1)0]+[G2(P2)0]; Up-right:

Simple cooperative linking of [G1(P1)0]+[G2(P2)0]
modules. P1 is permease and metabolise for both GERM-

s; P2 is polymerase for replication of both G1 and G2
genes. Down: cooperative linking with buffer reversible

regulatory reactions to modulate the G1, G2 catalytic
activity in the modules [G1(P1)1]+[G2(P2)1]

regulation is modelled by using a stochastic approach
accounting for 40 reactions and 27 species (reduced
model) or 70 reactions and 50 species (extended model).
Such a regulatory schema (fig. 1), including dimeric self-
repressors (PP, or OO; [8]) and mutual repression following
the presence in excess of one of the activating inducers,
can also be illustrated by means of simpler representations
of Yang et al. [35], and Maria [7,16]. The advantage of such
a modular approach is the possibility to adapt the model
size according to the available information, or to use the
same GERM structure to model several gene expressions.
Modular approach can also be useful in simulating the
hierarchical organization of the cell regulatory networks.

The modular approach assumes that the reaction
mechanism and stoichiometry of the kinetic module are
known, while the involved species are completely
observable and measurable. Such a hypothesis is rarely
fulfilled due to the inherent difficulties in generating reliable
experimental (kinetic) data for each individual metabolic
subunit. However, incomplete kinetic information can be
incorporated by performing a suitable model lumping, or
by exploiting the cell and module global properties during
identification steps. The regulatory modules can be
constructed relatively independent to each other, but the
linking procedure has to consider common input/output
components, common linking reactions, or even common
species. Rate constants can be identified separately for
each module, and then extrapolated when simulating the
whole regulatory network, by assuming that linking
reactions are relatively slow comparatively with the
individual module core reactions. In such a manner, linked
modules are able to respond to changes in common
environment and components such that each module
remains fully regulated [7]. The advantage of such a
modular approach is the possibility to reduce the system
model complexity and the size of the identification
problem, by understanding, for instance, the gene
expression response to a perturbation as the response of a
few genetic regulatory loops instead of the response of
thousands of genetic circuits in the metabolic pathway
[14].

To easily study and compare GERM regulatory efficiency,
Sewell et al.[17], Yang et al.[35], and Maria [4,7-9,14-16]
proposed various types of hypothetical GERM simplified
reaction pathway designed to ensure homeostatic
regulation of a generic protein-gene (P/G) pair synthesis,
with a large number of exemplifications from E. coli (some
of them are displayed in fig. 1, 2).

These simplified representations include the essential
nutrient lumps (NutP, NutG), metabolites (MetP, MetG), and
intermediates involved in the reactions controlling the
transcriptional and translation steps of the G expression
and P synthesis. The module nomenclature, proposed by
Yang et al. [35] of type [L1(O1)n1;...;Li(Oi)ni]  includes the
assembled regulatory units Li(Oi)ni. One unit i is formed by
the component Li [i.e. enzymes/TF/P or even gene G, or M
(mARN), etc.] at which regulatory element acts, and n1
=0,1,2,… number of effector/TF species Oi (i.e. P, PP, PPPP,
O, OO, OOOO, R, RR, RRRR, etc.) binding the catalyst L.
For instance, a G(P)5 unit includes five successive binding
steps of G with the product P, that ia G + P ⇔ GP + P ⇔
GPP +P⇔GPPP +P ⇔  GPPPP +P ⇔  GPPPPPP, all
intermediate species GP, GPP, GPP, GPPP, GPPPP, GPPPPP
being inactive catalytically, while the mass conservation

law is all time fulfilled, i.e. =constant. Such a

representation accounts for the protein concentration
diminishment due to the cell-growth dilution effect, but
could also include protein degradation by proteolysis.

The G(P)n type of units, even less realistic (fig. 1),
represent the simplest GERM used as control mechanism
against which all others are compared. In a G(P)0 module
(fig. 3), there are only two main synthesis chains. P is a
permease that catalyses the import of NutG and NutP from
the environment, and a metabolase that converts them
into cellular metabolites MetG and MetP. P is also a
polymerase that catalyses the synthesis of G from MetG.
Gene G, symbolizing the genome of the cell, functions as
catalyst for the synthesis of P from MetP. The result is that
G and P syntheses are mutually autocatalytic. In G(P)0
there are no regulatory elements (no buffering reactions
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to control the G  activity). In G(P)1, the negative feedback control of transcription is realized by P itself (as effector), via a
rapid buffering reaction, ,G+P⇔GP leading to the catalytically inactive GP. As proved [7,16], the maximum regulatory
efficiency at steady-state (index ‘s’) corresponds to [G]s/[G]total =1/2, when the maximum regulation sensitivity vs.
perturbations in [P]s is reached [17]. Further allosteric control of G activity, leading to inactive species [GPn], amplifies the
regulatory efficiency of the module. As an example, prokaryotes commonly bind multiple copies of transcription factors
as a means of promoting cooperative effects and thus improving regulatory effectiveness [35]. For instance, dnaA is an
auto-regulated protein and at least five copies can bind to dnaA gene in E. coli. [35, 36].

As discussed by Kholodenko et al. [39], fast buffering
reactions are close to equilibrium and have little effect on
metabolic control coefficients. As a consequence, rate
constants of such rapid reactions are much higher than
those of the core synthesis and dilution rates. To reduce
the size of the unknown vector in (9), large values of  can
be postulated (5 to 7 orders of magnitude higher) [7]

Appendix. WCVV modelling hypotheses and effect of
a perturbation on the cell-volume and species
concentrations.

In a reacting system of constant volume, the classical
(bio)chemical formulation of species mass balance lead
to the process kinetic model of the form of eqn. (1). By
contrast, in a variable-volume WCVV, all cell species should
be considered (individually or lumped) all contributing to
the cell volume increase (see the proof below). As the cell
volume is doubling during the cell cycle, this volume
variability can not be neglected in the cell kinetic models
describing various cell metabolic processes taking place
in the cytosol. Thus, a metabolic kinetic model in a WCVV
approach should be written in the form underlined by Aris
[20], and promoted by Maria [4,7-10, 13-16,24,25,43], that
is eq. (2). The definition of D results from the way by which
eqn. (2) was deducted [7,20], see eqn. (3).The system
Jacobian is . The rate constants k can be
estimated from the known stationary concentration vector
CS, by solving the nonlinear algebraic set (9), for every GERM
type.

So, the so-called cell-content dilution rate D term is in
fact cell-volume logarithmic growing rate. To better
understand the importance of involving D in the cell kinetic

Fig. 3. Exemplification of the cell content ballast
effect on the species recovering times to

homeostasis, in the case of a [G(P)1] gene
expression module. Gene G (left) and its encoding
protein P(right) recovery trajectories after a –10%
impulse perturbation in the [P]s = 1000 nM at t=0.
Solid line trajectories correspond to a high ballast

cell, while the dash line trajectories to a low
ballast cell. The species concentrations in nM are

given in the table 2 of  [44]

The  G(PP)m units reflect better the regulatory loops in which multiple copies of effectors (proteins and transcription
factors TF) bind to promoter sites on the DNA that control expression of gene G encoding P (see exemplifications from E.
coli by Yang et al. [35]. The control is better realized by including a supplementary P dimerization step before the buffering
reactions. This explains why most of transcription factors bind as oligomers (typically dimers or tetramers) and why they
typically bind in multiple copies [7, 35, 37].

Module [G(P)n; M(P)n’] (fig. 1 up-right, and center) tries to reproduce more accurately the transcription / translation
cascade of reactions during the gene expression, by including an allosteric control at two levels of catalysis: on G (i.e.
DNA) and on M (i.e. mRNA). M is synthesized from nucleotides under G catalysis, and then, P is synthesized in a reaction
catalyzed by M (translation). Such a supplementary control of mRNA activity is proved to be a more effective means of
regulating protein synthesis [7,16,35,38].

It is also to mention the way by which the rate constants in the rapid buffering reactions are estimated, that is for the
effector  reaction type [7]:

(11)

model, and its significance and link to the reactions taking
place into the cell, including the protein synthesis regulation,
one considers a continuous-variable ordinary differential
equations (ODE) model (2) of a standard formulation.
Additionally, if the constant osmotic pressure is imposed
to the cell system (isotonic system) to maintain the cell-
membrane integrity, but neglecting the inner-cell gradients,
one considers an additional constraint (7) to the cell kinetic
model introduced by Grainger et al. [23], and Pfeiffer et al.
[21], which, by derivation and division with V is leading to
definition of Grainger et al. [23] eqn. (6). Consequently, the
dilution D results as a sum of reacting rates of all cell species
(individual or lumped), while the RT π term can be easily
deducted in a isotonic cell system, from the fulfilment of
the following invariance relationship (7) derived from the
Pfeffer’s law in diluted solutions. Relationships (6-7) are
important constraints of the cell model (3), eventually
leading to different simulation results compared to cell ODE
kinetic models that neglect the cell volume growth and
isotonic effects [4,7,16].

If one assumes a constant D over the cell cycle, then,
from eqn. (6) it results an exponential increase of the cell
volume during its balanced growth: V(t)=Voexp(+D . t).

Such a variable-volume formulation (3) is suitable to
accurately model the cell growth and its division [26]. Such
a model formulation allows studying the various GERM
regulatory efficiency and the response of coupled GERM-s
to continuous perturbations in the environment, and also
the ‘inertial’ effect of the cell-‘ballast’ vs. continuous
changes in cell and environment [7,8]. As ca. 80% of the
cycle period is the growing phase [26], and assuming a
quasi-constant osmotic pressure and a constant volume
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growing logarithmic rate, the generic cell model (3) can
be considered satisfactory to study the regulatory network
effectiveness. The model was proved to be also very
effective to study the response to continuous perturbations
in the environment of various genetic regulatory circuits
including genetic switches [9,14,43], or expression of a
certain operon like those for mercury uptake in gram-
negative bacteria [15,24-25].

By adopting a continuous-variable model of (3) type to
construct a hypothetical Whole Mechanical (deterministic)
Cell (in the sense of Tomita et al.[5,6]) that maintain
intracellular homeostasis while growing auto-catalytically
using environmental nutrients present in variable amounts,
the following hypotheses should be adopted:

(i) The cell system consists in a sum of hierarchically
organized components, e.g. metabolites, genes DNA,
proteins, RNA, intermediates, etc. (interrelated through
transcription, translation and DNA replication); the cell is
separated from the environment (with nutrients) by a
membrane.

(ii) The cell is an isotherm open system with an uniform
content (perfectly-mixed case); species behave ideally,
and present uniform concentrations within cell. The cell
system is not only homogeneous but also isothermal, and
isotonic (constant osmotic pressure), with no inner
gradients or species diffusion resistance

(iii) The cell is an open system interacting with the
environment interacts through a semi-permeable
membrane.

(iv) The membrane, of negligible volume, presents a
negligible resistance to nutrient diffusion; the membrane
dynamics is neglected in the cell model, being assumed to
follow the cell growing dynamics.

(v) When studying an individual P-synthesis regulatory
module, the other cell species are lumped together in the
so-called cell ballast [4,7,9].

The inner osmotic pressure is constant, and all time
equal with the environmental pressure, thus ensuring the
membrane integrity . As a
consequence, the isotonic osmolarity under isothermal
conditions leads to the equality ,
which, using eqn. (7) indicates that the sum of cell species
concentrations must equal those of the environment, i.e.

. Even if in a real cell such equality is

approximately fulfilled due to perturbations and transport
gradients, and in spite of migrating nutrients from
environment into the cell, the overall environment
concentration is considered to remain unchanged. On the
other hand, species inside the cell transform the nutrients
into metabolites and react to make more cell components.
In turn, increased amounts of polymerases are then used
to import increasing amounts of nutrients. The net result is
an exponential increase of cellular components in time,
which translates, through isotonic osmolarity assumption,
into an exponential increase in volume with time. The
overall concentration of cellular components is time-
invariant (homeostasis), because the rate at which cell-
volume increases equals that at which overall number of

moles increases, leading to a constant  ratio.

The species concentrations are usually expressed in nano-
moles, being computed with the relationship [7]:

                [A1]

where NA is the Avogadro number. For instance, for an E.
coli cell, with an approximate volume

[35], it results for GsC  a value of

.
(vi) Cell volume doubles over the cell cycle period (tc),

with an average logarithmic growing rate of Dln(2) / tc.
Under stationary growing conditions, it results an
exponential volume growth given by: V(t)=Voexp(+D . t).

(vii)  For stationary growing conditions, species
synthesis rates are equal to first-order dilution rates (DCj),
leading to time-invariant species concentrations, i.e.
homeostatic conditions of dCj / dt)s=0 Such a nonlinear
algebraic set (9) is used to estimate the rate constants k
from the known stationary concentration vector .

Importance of the WCVV approach in computing the
secondary perturbations. When one applies an impulse
perturbation to one of the cell-species (e.g. a protein
denominated by P), that implies removal (by excretion),
or addition (by import) of a certain copynumbers of P from
(to) the cell, by applying (7) and keeping constant the cell
osmotic pressure p and temperature, as an effect of
perturbation according to (7) the cell-volume will
immediately contract (or dilate) from V to V*. Consequently,
the species concentrations will var y  from

 irrespectively that the
component suffered any copynumbers’ variation. This
effect due to the cell volume variation is called secondary
perturbations or indirect perturbations [7]. The difference
in the P copynumbers before and after perturbation, i.e.

  (the * denotes the perturbed state), can be
easily calculated for a certain imposed final concentration
for P, i.e. . The final copynumbers of P, n*p, for
an imposed C*p results by re-evaluating the species
concentrations:

      [A2]

To prove the relationships [A2], one considers that,
before and after applying the P perturbation, the sum of
copynumbers of all other species remains invariant, that
is:

[A3]

On the other hand, volume relationship (7), written for initial
and final states and for the same pressure π, is

.  By multiplying [A3] with

RT/ π constant value, then changing terms from left to right,
and including the volume formula, one obtains the net volume
variation:

[A4]

By dividing [A4] with the product (V*V), and then
multiplying with np*, one obtains:

[A5]

or by changing terms from left to right, leads to:
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[A6]

or by re-arranging, one results:

[A7]

By introducing the invariant , eqn. (7) in

the right side, and substituting with,  one
obtains:

[A8]

Relationship [A8] is identical with [A2]. On the other
hand, the volume relationship (7), written for initial and
final states and for the same pressure π, is

, leading to:

. So, the sum of concentrations into

the cell is a conservative term, as proved by:
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